Initialization and Displacement of the Particles in TRIBES, a Parameter-Free Particle Swarm Optimization Algorithm

نویسندگان

  • Yann Cooren
  • Maurice Clerc
  • Patrick Siarry
چکیده

This chapter presents two ways of improvement for TRIBES, a parameterfree Particle Swarm Optimization (PSO) algorithm. PSO requires the tuning of a set of parameters, and the performance of the algorithm is strongly linked to the values given to the parameter set. However, finding the optimal set of parameters is a very hard and time consuming problem. So, Clerc worked out TRIBES, a totally adaptive algorithm that avoids parameter fitting. Experimental results are encouraging but are still worse than many algorithms. The purpose of this chapter is to demonstrate how TRIBES can be improved by choosing a new way of initialization of the particles and by hybridizing it with an Estimation of Distribution Algorithm (EDA). These two improvements aim at allowing the algorithm to explore as widely as possible the search space and avoid a premature convergence in a local optimum. Obtained results show that, compared to other algorithms, the proposed algorithm gives results either equal or better.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

متن کامل

Optimal Placement of Static VAR Compensator to decrease Loadability Margin by a Novel Modified Particle Swarm Optimization Algorithm

In this paper, the Static Var Compensator (SVC) has been used to improve dynamic behaviour of power system. To do this, a new objective function is formulated considering power loss reduction, voltage profile improvement and loadability margin decrease. Other contribution of this research is proposing a novel structure for Particle Swarm Optimization (PSO) algorithm through modifying the initia...

متن کامل

Optimal Placement of Static VAR Compensator to decrease Loadability Margin by a Novel Modified Particle Swarm Optimization Algorithm

In this paper, the Static Var Compensator (SVC) has been used to improve dynamic behaviour of power system. To do this, a new objective function is formulated considering power loss reduction, voltage profile improvement and loadability margin decrease. Other contribution of this research is proposing a novel structure for Particle Swarm Optimization (PSO) algorithm through modifying the initia...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

A New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement

In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the  combination of  the  conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008